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A new numerical-analytical method for solving non-linear variational problems of mechanics is presented. The method enables 
additional isoperimetric conditions and boundary conditions of different types to be taken into account. Unlike existing approaches, 
the method is based on the use of residuals of the unknown functions corresponding to abscissae at which they satisfy the required 
conditions. The method has a clear geometrical interpretation and provides a more confident idea as to the convergence of the 
iteration algorithm, which is quadratic in nature. The algorithm constructed is used to compute single-mode and multi-mode 
viscous incompressible flows in a plane convergent channel (Jeffrey-Hamel flow) for a broad range of governing parameters 
(the aperture angle and Reynolds number). 0 2003 Elsevier Science Ltd. All rights resewed. 

1. FORMULATION OF THE PROBLEM 

The basic principle of the proposed numerical-analytical method for solving isoperimetric problems 
may be demonstrated by taking, as an example, the simplest classical problem of the form [l, 21 

I 
JIyl=j F(x,y,y’)dx+min, I[yl=i N(x,y,y’)dx=O (1.1) 

0 Y 0 

y=y(x), y(O)=y(f)=O, Osx~f, (y.y’)~G 

Certain more general specifications of the boundary values of x, y and the quantity I can be reduced 
to this case by a simple transformation. It is assumed that the functions F and N are fairly continuous 
and are such that the necessary conditions for optimal@, in the form of a boundary-value problem for 
the Euler-Lagrange equations, are applicable [l, 21. As a result one arrives at the following relations 
that determine the unknown continuous function y(x) and an unknown Lagrange multiplier h: 

UK1 = 0, y = y(x,h), y(0, h) = y(l,h) = 0 

z’ = A’, z = t(x, h), ~(0, h) = z(f, h) = o (14 

K= K(x,y,y’,h)r F+lh’, f.[.]r $$,.,-$,.I 

Thus, it is required to solve non-linear boundary-value problem (1.2) for y and z and to select the 
optimal solution from among the solutions found in accordance with conditions (1.1). As far as 
computations are concerned, one has to determine the unknown parameters y = y’(0) and h, i.e. the 
data still needed to integrate the Cauchy problem corresponding to (1.2). 

None of the effective methods available for investigating non-linear boundary-value problems of type 
(1.2) is convenient for investigating essentially non-linear mechanical systems over a wide range of 
governing parameters. The numerous available methods - the shooting, double-sweep, gradient descent, 
successive approximation or tangents, quasi-linearization and the many modifications of these methods 
[l-7] - involve considerable difficulties, of which the following deserve mention: divergence, or extra- 
ordinarily slow, doubtful, convergence, of iterations (degeneracy of the sensitivity matrix and “ravine” 
effects), very long processor time and inability in practice to check the convergence and actual precision 
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of the approximate solutions, This situation may apparently be attributed primarily to disregard of an 
important property of boundary-value problems: the solution depends in an essential way on the length 
of the interval 1. In all approaches that have been proposed, the interval over which the argument x 
varies is fixed and is not varied during the investigation of the approximate solutions. Applicable 
procedures use only the residuals of the unknown functions at fixed points (for problem (1.2) - at 
x = 1 and x = 0). There is no investigation of the behaviour of the approximate solutions based on 
integrating the corresponding Cauchy problems and determining their residuals corresponding to X; 
neither are such measures used to improve the accuracy of the missing data (in particular, y and h). 

The desirability of using one of the basic properties of the approximate solution of problem (1.2) - 
the residual corresponding to the argument x - may be illustrated graphically (see Fig. 1). Let Y, 2 be 
a solution of the Cauchy problem corresponding to Eqs (1.2) and satisfying the conditions Y = 0, 
Y’ = y*, 2 = 0, h = h at x = 0 (where y* and h* are certain estimates of the parameters y and h). The 
functions y and z at x = 0 satisfy the conditions y(0) = z(0) = 0; y’(0) = y”, and h = ho, where y” and 
ho are the unknown exact values. Investigation of the residual of Y for x 3 1 indicates that Y is only 
slightly sensitive to the parameter y. Although the residual corresponding to Y is numerically small, the 
number y* cannot be considered a good approximation, since the magnitude of the root of the function 
Y(x, y*, h*) closest to 1 (denoted, say, by 5) is significantly different from I: ] 5 - I] - 1 (the residual 
corresponding to x is large). Conversely, the function 2 may depend very much on the parameter h, 
that is, a small change in h may cause significant changes in the residual Z(1, y”, h*). For example, this 
residual may be relatively large, while the residual corresponding to the abscissa x will be small (the 
value 5 of the root of the function Z closest to 1, that is, ] c - I] 6 1). In that sense, h* may be regarded 
as a “good” approximation to h. 

Thus, an analysis of the behaviour of the s’olution Y(x, y*, h*), Z(X, y*, h*) yields additional information 
about its sensitivity to changes in the unknown parameters y and h. Without such an analysis, it is difficult 
to judge whether a solution of the boundary-value problem exists in the neighbourhood of estimates 
y* and h* found in some way. The most natural and widely used methods for constructing estimates 
y* and h* are the variational-functional approaches based on the Rayleigh-Ritz and Bubnov-Galerkin 
methods [3-4]. 

An investigation of the behaviour of residuals and the construction of numerical solutions of 
multidimensional boundary-value problems encounter considerable difficulties [3-71. This is the case 
even for one-dimensional non-linear systems, in particular, for discontinuous systems. The main 
difficulties arise in the irregular case when the equations for parameters like y and h, which determine 
the boundary conditions, have a large number of roots, e.g., in the case of oscillatory systems [8-lo]. 

Figure 2 demonstrates a different type of behaviour of the residuals Y(1, y, h*)Z(1, y*, h) as functions 
of y and h, respectively. The initial zone 1 corresponds to the regular situation (the required solution 
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Fig. 2 

exists in a small neighbourhood of y*, h*). In zone 2 one observes a weak dependence of .Z on h and 
rapid oscillations of Y as a function of h, while in zone 3 there are relatively sharp changes in the residual 
corresponding to Z but weak changes in that corresponding to Y, sections 2 and 3 are not regular in 
the computational sense. In many cases, further simplification is necessary, such as the use of asymptotic 
small-parameter methods (singular perturbations [ll-131 or averaging [lo]). 

In what follows we propose a numerical-analytical accelerated-convergence method for solving 
boundary-value problems of type (1.2), based on allowance for the residuals of the approximate solutions 
corresponding to the argument X. Computational experience indicates that this approach yields high 
precision and stability of the computations, so that one can effectively control the convergence of the 
approximate numerical calculations and construct the required solutions in complex irregular situations, 
while allowing the governing parameters of the system to vary over a wide range. 

2. A STANDARD PROCEDURE, OF THE SAME TYPE AS THE 
METHOD OF TANGENTS AND ITS MODIFICATION 

We shall describe, as it applies to problem (1.2) a Newton-type method for the numerical determination 
of the unknown parameters y and h, defining the corresponding Cauchy problem. We introduce sensitivity 
functions u, w and u, s, described by the linear relations 

L[ K;v + K;m ‘1 = 0, w’ = N;v + N;sv ’ 

v(O)=O, v’(O)=l, w(O)=0 

L[ K;u + K;.u’ + N] = 0, s’ = N;u + N;d 

u(0) = u’(0) = s(0) = 0 

a2 
S=ah 

(2.1) 

A prime with a subscript y or y’ denotes partial differentiation with respect to y or y’, respectively. If 
the function y(x) is known, a solution of Cauchy problem (2.1) is constructed numerically, integration 
being performed independently for u, w and u, s. The required functiony(x) is defined by the relations 

L[ K] = 0, y(O) = 0, y’(0) = y; y = y(x, y, A), y(l, y, h) = 0 

z’ = N, z(0) = 0; z = z(x, y, h), z(I, y, h) = 0 (2.2) 

Suppose an initial approximation (estimate) y* and h” is known for the parameters y and h and a 
irregular situation occurs (see Section 1 and Fig. 2 [zone 11). Then one can use a Newton-type recurrence 
procedure to obtain more accurate values of y and h, based on high-precision integration of Cauchy 
problems (2.1) and (2.2). 

Let us consider the first step of the procedure. According to (2.2) taking relations (2.1) into 
consideration, we have the following approximate expressions for y and z 
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(2.3) 

where Y*, Z* is a solution of Cauchy problem (2.2) for the known y,*, A*; V* and w*, and U*, S” is the 
corresponding solution of (2.1), and O$* is a term of the order of (Sy, &A’). These functions are assumed 
to be known apart from O(Sy2 f 6h2). Boundary conditions of (2.2) yield approximate equations for 
Sy and 6h 

V’(f)6y f U’(f)6h = -Y*(f) + 0; 

w*(fpy -t S’(f)i% = -z*(f) + 0;‘ (2.4) 

In the general situation, the “small” quantities Y*(l), Z*(I) and Sy, 6h may be of different orders. For 
the regular case, omitting quadratic terms, we find the unknown Sy and 6h from system (2.4) with an 
error of the same order Oz. 

sy’ _ -- Y’(f)S’(f) - Z’(f)U’(f) ) 6h* = Y*(f)W’(f) - Z’(f)V’(f) 

A*“(f) A*‘(f) 
(2.5) 

A*(f) = V*(f)S*(f) - U’(f)W*(f) # 0 

The eigenvalues of the matrix of the coefficients of 6y* and 6h* must be quantities of the same order. 
Using the explicitly found expressions (2.5) for the corrections 6y” and 6h*, we obtain improved values 
for the unknowns y and h 

y’“=y’O’+ijy ) (0) ~(1’ = h(O) +&‘O’, y’o’ = y*, h(O) = A* 

Iy-y"'I=o;, p-h"'I=O,Z 
(2.6) 

The first step of the iterations has thus been completed. On that basis( )using relations of type 
(2.1)-(2.6), one now performs the next, second step, determining y(‘) and h ’ . The (n + 1)st step of 
the recurrence procedure prescribed by the method of tangents reduces to simultaneous integration 
of the Cauchy problems (2.2) with known y = y(“) and h = A’“’ and simultaneous integration of the 
Cauchy problems (2.1); as a result one obtains the unknown functions Y’“‘@) and Z(“)(X) and sensitivity 
functions v(“)(x), W@)(X), e’(x) and S(“)(X). Th e use of an expression of type (2.3) 

Y(X* Y (“), P) = Y’“‘(x) + Vyx)Gy(n) + U’“‘(x)6A,‘“’ + O,Y@y(“J, a!“‘) (2.7) 

Z(X,y’n),h(“)) = Z’“‘(x)+ W’“‘(x)Gy’“’ +s’“‘(x)W + 0;(6y’“‘Jjh’“‘) 

with x = 1 leads, accordin to (2.2) to equations of type (2.4) for 6~‘“’ 
with an error O?(&y 
h(“+l) 

(‘*), 6Ag)) to determine the unknowns 8~~~) 
and &A’“‘, which are then solved 

and Sh’“’ and improved values y(““) and 

6y@) = - Y(“‘(f)P(f) - Z~“~(f)cF(f) 

A”“(f) 

&.(“) _ Y’“‘(f)W(“‘(f) - Z(“‘(f>V’“‘(f> 

A@‘(f) 

A’!“‘(f) = V(n’(f)Scn’(f)- U’“‘(f)W’“‘(f) # 0 (23) 

Y (n+l) = y(N + 6y(n), ) y _ y(n+l) ) c op+u 
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Substituting the quantities (2.8) into (2.7) we obtain a solution in the (n + 1)st approximation. As 
remarked, the convergence of the procedure is satisfactory in the regular case; in irregular situations 
the computation process may diverge, as often happens in procedures of continuation with respect to 
a parameter (see Section 5). The scheme presented above is equivalent to minimizing a quadratic 
residual, e.g. of the form 

E2(Y,h)=Y2(f,Y,h)+Z2(1,Y,h)jmin, YEr, he A (2.9) 
YJ 

Lacking an analysis of the residual as a function of 1, one cannot confidently evaluate the quality of 
the computation process and its convergence (see the example in Section 5). It should also be noted 
that the computation process and an estimate of the accuracy are considerably complicated by the multi- 
dimensional nature of the problem: one has to integrate a ninth-order system for Y, Y’, Z; V, Tr, W; 
U, U’, S. At the same time one has to solve a system of two equations for y and h, which are generally 
determined numerically with different degrees of precision. As an effective approach to the computation 
of a highly accurate value of y” and h , one should use a numerical-graphical method, based on 
constructing the functions y(h) and h(y) in some neighbourhood of the known point y*, h*, though these 
functions need not be single-valued (see below, Sections 3 and 4). Each curve is constructed separately 
by solving one-dimensional boundary-value problems using a rapidly convergent accelerated 
convergence method and the procedure of continuation with respect to a parameter. In a small 
neighbourhood of the point at which the curves intersect, one can use a high-order approximation. After 
improving the values of y and h, the computation algorithm continues in recurrence fashion. To obtain 
a confident idea of the existence of a solution to the boundary-value problem, one has to determine 
and use the residual corresponding to the abscissax. In practical computations, such an approach turns 
out, in the final analysis, to be effective [14, 151. 

The standard, Newton-type procedure (2.1)-(2.9 
make use of the residuals of the solutions Y(“)(X), Z@ 1 

, which is poorly convergent, may be modified to 
(x) corresponding tox. These residuals are defined 

by analogy with the scalar case [14] 

5 (“’ E(“’ = l-- I , P 

p’ = Arg, Y(“)(x), 

/p) q (n) = argmlnqin) , I I 
1- q!“’ 

1 
T$“) = Arg, Z(X), ] l.l* ] 4 1 

In the linear approximation with respect to E@) 
6h@‘) may be written in the form 

and u@), the expressions for the corrections 6~~“) and 

&y(n) = - 
E(“‘Y’(“)(f)S(“‘(I)-CL(“)Z’(“)(1)U(”)(f) 

d’“‘(1) 

62”’ = 
p’y’(“‘(j)w(“)(/) - p(“)Z’(“)(j)V(“‘(/) 

d”‘(l) 
(2.11) 

&l+u _ (&t))2, /p+” _ (p’“‘)2 

Implementation of operations (2.10) to determine the residuals E @) 
idea as to whether a solutiony(x), Z(X) near Y@)(X), Z”“( 

and u@) yields a more confident 
x 

for &“+l) and $n+l) 
) exists, and the validity of the estimates (2.11) 

provides an indication as to the actual rate of convergence of the process to the 
solution. Violation of these estimates indicates that the iterative procedure will diverge; in such cases, 
however, it may converge to another solution (bifurcation). 

3. AN ACCELERATED CONVERGENCE METHOD BASED ON 
THE RESIDUAL CORRESPONDING TO THE ABSCISSA 

Divergence of the standard procedure proposed in Section 2 for the simultaneous determination of 
the unknown parameters y and h may be avoided by adopting a numerical-analytical approach based 
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) h 

Fig. 3 

on graphical representations. It presupposes high-precision construction of the curves y(h) and h(y) by 
an accelerated convergence method using the residual of the solutions of the boundary-value problem 
corresponding to the abscissa [14]. At the initial step, one in some way determines whether boundary- 
value problem (1.2) or (2.2) has a solution and estimates the domains (e.g. intervals) of parameter values 
y E I, h E A, for which this solution exists. One then constructs the functions y = y(h) and 
h = h(y) for the corresponding domains of variation of the arguments (see Fig. 3). 

We will first present the scheme for constructing the function y(h) to as high on accuracy as desired 
for all h E A, in particular, ho = h*, where h* is the estimate for a described in Section 2. The solution 
of boundary-value problem (2.2) for y for a fixed value of A = ho will be constructed by the rapidly 
converging accelerated convergence method described in [14] 

(n) 
Y 

(n+l) = p, + E(“)#p, c(n) = 1_ 5 
1 

Cc”) = {‘“‘(ko) = arg, Y(x, y’“‘,h,) 

@L- ~‘cv”‘~~O) = _ Y’UJ’“‘Jo) +(@)) 
wp, y(“), 10) 

“(I fJ,) f () 
V(f, y’“‘,h,) ’ ’ (3.1) 

Y to) = y*, qO’(h,)=arg, Y(x,y*&) 
&‘“‘(xo)=& 9 l&191; n=0,1,2 )... 
E(“) < &‘“492 c . . . d d-‘(d#? e(n) = 2”) d(h,) = const 

The desired solution y, y’ is determined with an error 0(&‘“+‘)) on the basis of the functions 
Y(x, y@), ha) and Y = dY/&. As is shown by computational experience and a theoretical estimation of 
the accuracy, the solution procedure (3.1) for one-dimensional boundary-value problem (2.2) fory, for 
a fixed value of h = ho (6h = 0) and subject to successful choice of the estimate y* (Ed - 0.11, yields 
the desired quantities after two or three iterations, with a relative error of the order of lOA- , which 
is sufficient for practical applications. It is usually pointless to increase the number of iterations, because 
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of the accumulation of rounding errors. The expression for the increment to y(“+‘) (3.1) may be expressed 
in terms of the residual corresponding toy, as in the standard Newton-method approach (see Section 
2). When that is done there is no need to carry out the operation of determining the abscissa c(“)(ha) 
with a relative error O(E(“)~) = O(E(“+‘)). However, this op eration seems useful and important when 
solving complex non-linear problems, in order to obtain a confident idea of the existence of a solution 
and to analyse the behaviour of the residual corresponding to the abscissa [14]. 

Next, using the procedure of continuation with respect to the parameter h, one chooses a sufficiently 
close value of h = hi = ho + Ah,, taking y(‘)(ht) = y’“‘(ho) = y(ho) as the initial approximation. 
The desired solution with the required accuracy is constructed by the recurrence algorithm (3.1): 
y@)(ht) = y(h,), and so on. In the following steps pertaining to the 
extrapolation (linear, quadratic or cubic) of the initial approximation y 

(pirameter h, one can apply 
(A,), hi E A(i = 0, 1, . ..) to 

accelerate the convergence. Thus, the curve y,(h), h E A will be constructed with the required accuracy 
by solving boundary-value problem (2.2) for y. 

Note that, according to relations (3.1) the sensitivity coefficient V(X, y, h) of the solution Y(x, y, h) 
must be non-zero in a small s-neighbourhood of the point x = 1 for the values of y E I and h E A under 
consideration. This ensures that the functions y,(h) will be single-valued and smooth. Otherwise, 
i.e. in a domain where V = 0, the inverse function by(y) is constructed (see the discussion below and 
Fig. 3). 

By means of an analogous recurrence algorithm, the curve h = h,(y), y E I’, is determined by solving 
boundary-value problem (2.2) for Z at fixed values of the parameter y. As before, a certain parameter 
value y. is specified, in particular, y. = y* E I, where y* is the estimate Ay = 0 (see Section 2). An 
analogous construction, using the rapidly converging accelerated convergence method, yields a solution 
with the desired accuracy 

h(*+l) = h(m) + p(*)@*), c Cm) p(*) = 1 - - 1 
ccm) = I’“‘= arg x Z(x,y, 9 h’“‘) 

(3.2) 

S(I,y,,h+)#O, Z’= N 

PO) = A*, Q”‘(yo) = argx Z(x,yo,h*) 

p’“‘(l())=p, ]u]91, m=0,1,2 (... 

P (m) c h(J.l(m-‘))2 d . . . G /~-‘(hp)~(“), e(m) = 2m, h(y,) = const 

The solution of boundary-value problem (2.2) for z is determined with an error O(u(“+‘)) in the 
ordinate and the abscissa. The closeness of Y(x, yo, h(“‘)) to the solution of the boundary-value problem 
is determined by the quantity E, that is, by the closeness of y. to the exact value. As in the case of (3.1) 
the convergence of procedure (3.2) is quadratic with respect to the parameter u (or, more precisely, 
@z). We also note that he correction to h @‘+‘) in (3.2) may be expressed in terms of the residual 
corresponding to Z (see above). When that is done, however, one has no control over the residual 
corresponding to the abscissa or over the satisfaction of the boundary condition. 

Continuing along the same lines as before, one now uses the procedure of continuation with respect 
to the parameter y = yl = y. + Ay,, where Ay, is sufficiently small, taking h(‘)(yt) = h(“)(yo) as the initial 
approximation, and so on. The argument y E I takes a sequence of consecutive values y = x (j = 0, 
1, . ..). which are enough to construct the curve h,(y) with the desired accuracy. Acceleration of the 
convergence and an increase on the stepsize Sy are achieved by extrapolation of a suitable order. As a 
result one constructs the curve h,(y), y E I, with accuracy sufficient for subsequent computations. Here 
it is essential to assume that the sensitivity coefficient S(1, y, h) of the solution Z(x, y, h) does not vanish 
in a small neighbourhood of the point x = I for the values of y E I and h E A under consideration. This 
ensures that the function AL(y) will be single-valued and smooth; otherwise, one constructs the inverse 
function y,(h) (see below and Fig. 3). 
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After numerical or graphical construction of the functions y,(h) and AZ(y), one finds the common 
point (y”, hp as the point at which these curves intersect. It determines the required solution of boundary- 
value problem (2.2) and is a root of the system 

Y = Yy(Vr h = $(Y), y” = Y,@,(YO)), A0 = h,(YO). (3.3) 

This point is found numerically by polynomial interpolation of the functions y,(h,) and h,(y;) in a 
neighbourhood of the point of intersection (e.g., linear interpolation). 

Note that in a sufficiently small neighbourhood of the required root (y”, EL”) one can use a recurrence 
procedure to pass from the curve y = y#), from a point yi = y,(h;) on the curve h = h,(y), to the point 
hi 1 = h,(y,, (hi)) = h,(yJ, and then again on the curve y = Qh) to the point y,,,: and so on (see the 
neighbourhood of the point A in Fig. 3). The process will converge like a geometric progression to the 
required point with exponent x, 0 < x < 1, if the bisector of the angle at which the curves h,(y) and 
y,,(h) intersect (shown in Fig. 3 by the dot dash line) is inclined to the left of the vertical (a positive 
angle); the convergence will be of the type of a stable focus or node. Otherwise the process will not 
converge. If the angle is negative (an unstable focus or node, point B in Fig. 3) the inverse procedure 
will lead to convergence: passage from the curve h = hi(y) from a point h, = hz(yj) on the curve y = y?(k) 
to the point yj,l = y~(hz(yj)) = y,,(hj), and then again on the curve 2. = AZ(y) to the point {,,I; and SO on. 
In the critical case of zero angle (point or centrc), use of the secant method will yield quadratic 
convergence with respect to a small parameter, representing the closeness of the points (y( = hj) and 
(yi+l = hj+l) to the point (y”, ho) ( point C in Fig. 3). Knowing the three points (Y~-~, A,_,), (yi, hi) and 
(Y~+~, hi+& one can apply the method of parabolas. This approach may also be used in the previous 
cases of convergent (point A in Fig. 3) or divergent (point B in Fig. 3) iterative processes. The critical 
case, when the curves (3.3) coincide (point D in Fig. 3) requires ;I separate consideration. 

As noted previously, when constructing the curves y = y,.(h) and i, = h,(y) it is essential to assume 
that V(1, y, h) and S(I, y, h) do not vanish in some neighbourhood ofx = I and y E I, h E A. Otherwise, 
the corresponding corrections to y @) and h(“) will not necessarily be small, nor will the curves be single- 
valued and have bounded derivatives. In the regions y E lci c I’ and ii t A0 C ‘2 where this happens, 
it makes sense to construct the inverse functions h = h,(y) and y :: y,(h) (see above). 

To fix our ideas, let us consider the construction of the curve h = h,(y), y F I‘,,. According to relations 
(2.1)-(2.3) the boundary-value problem of y, considered at a fixed value of y, E I,,, &y = 0, yields 
recurrence relations for h analogous to (3.1) 

5 (n) 
pl+l) = A(“) + pecan) 1 ’ EC”) = I-~ 

1 

5’“’ = c(“‘(yi) = arg x Y(x y. hen’) ’ II 

n(n) =- Y'Q%Yi~~"') =- Y'(~,Y,,h'"')+u(E'II)), I o(p), y I.(")) 
U(l,y,h)$O 

L' w,y,,w 
(3.4) 

h”’ = h*, 5”’ = argx Y(x, y, h”‘), EC” = E, ) E I+ 1 

The assumption that the sensitivity coefficient 0’ = dY/dii f 0 whenx- = 1, is quite natural. Otherwise, 
the solution of boundary-value problem (2.2) fory will be locally independent of the parameters y and 
h, which is an extremely degenerate situation. Thus, relations (3.4) yield the construction of a curve 
h = h(y) (or part of the curve contiguous with yart of the curve y = y,(h)) which, together with the curve 
h = h,(y), determines the required point (y’, h’) (see above). 

We will also briefly describe an algorithm for constructing the curve y = y,(h) (or part of it) for the 
case when S(Z, y, h) is small in the neighbourhood ofx = 1, A, E A,, under consideration. According to 
(2.1)-(2.3), the boundary-value problem forz yields, for fixed A,, Sh = 0, recurrence relations analogous 
to (3.2) for y 

Y Cm+]) = y(m) +p(ml@m), p(m) = 1 6 (;’ 

p = pqh .) = arg Z(x y(m) k .) J x ’ ’ J (3.5) 

D!“’ = - Zp’, yy hj ) Z(l,y'"',hj) 

J W(p”),y(m),h;) = - w(l,y’“‘,Lj) 
+ U(p’“‘) 
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W(1, y, h,) # 0, y(O) = y*, p(O) =l,l, lp[<l, ~‘“‘=arS,Z(X,Y*.~j) 

We recall that, according to relations (2.2) we have Z’ = N. Consequently, algorithm (3.5) and the 
procedure of continuation with respect to the parameter h = hj E Aa yield a construction of the required 
curve h = &i;-(y) which, together with the curve y = y,(h), determines the required point (y’, ho). The 
assumption that W f 0 in the neighbourhood of the x, y and h values under consideration is natural, 
since otherwise one again obtains a very degenerate situation: the solution of the boundary-value problem 
for 2 will be locally independent of y and h. 

As remarked previously, these algorithms may be expressed in a standard form (see Section 2) which 
does not require the determination of the residuals of the solutions to the Cauchy problems for Y and 
Z corresponding tox. This approach, however, does not ensure convergence of the computation process 
when one is solving essentially non-linear boundary-value problems, because of the different behaviour 
of each of the variables y and z and the different accuracies with which they are computed. Consideration 
of the residual corresponding to the abscissa enables one to stabilize the computation process and to 
monitor that the boundary conditions are satisfied; it does not slow down the process in practice. 

4. MODIFICATION OF THE ACCELERATED 
CONVERGENCE METHOD 

Other boclndary conditions. For solving applied problems, other types of boundary conditions are of 
interest. For example, at one or both endpoints the variable y must satisfy conditions “of the second 
kind”: y’(0) = 0 and/or y’(l) = 0 (see (1.1)). W e will first present an accelerated convergence algorithm 
for the Casey’(O) = O,y’(l) = 0. Then the conditions for the new sensitivity function u = ayir36 in relations 
(2.1) have the form u(0) = 1, u’(0) = 0, where we have introduced a parameter 0 E 0, to be determined 
from boundary-value problem (2.2) for y with conditions y(0) = 8, y’(0) = 0. The sensitivity function 
w = aZ/& and the other functions are defined as before. Equations (2.3)-(2.8) are considered after 
changing the notation y + 8, Ay -+ AO. 

The algorithms for constructing the curves 0 = B,(h), h = h,(8) and/or h = &(9), 8 = 8,(h) have the 
form of (3.1) (3.2) and/or (3.4) (3.5) with the above-mentioned changes of notation: y+ 8 E 0 (and/or 
8 E O. c O), Au, + Aej (and/or Ayi 4 At3J. Thus, the essential difference in the solution of the boundary- 
value problem is the change in the initial data when integrating the Cauchy problem for Y and T/-“. 

The case of boundary conditions of the formy(0) = y’(l) = 0 can be reduced to that considered above 
by introducing a new argument x = 1 -x and changing the notation of the functions F and N in relations 
(1.1) and (1.2) and so on. 

But if the conditions are imposed at both endpoints, y’(0) = y’(l) = 0, the algorithms presented in 
Sections 2 and 3 must be modified. As before, y is replaced by an unknown parameter 8 and the boundary 
condition for determining it takes the form ~‘(1, 8, h) = 0. In the standard algorithm (2.3)-(2.9) one 
applies the transformations V-+ V, U + U’. Algorithms (3.1) (3.2), (3.4) (3.5) for constructing curves 
Q,,(V and LJe) are modified as follows: 

l-9) - - J - CF(ej) = argx Z(x,ej,h(“)) 

(4.1) 

p(e,) = argx Y’(x, e,, A(“)) 

p)(kj) = arg, z(x,e(%j) 

Thus, according to algorithms (4.1) the main difference lies in the definition of the residuals 
corresponding to x and the definition of the coefficients of the corrections. In addition, the Cauchy 
problem for Y and V is formulated differently. 
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Note that the algorithms may be modified in the case of more-general boundary conditions, “of the 
third kind” 

[a(x)y + ~(x)y’l,=O,~ = 0, [a* + P21x=0.1 f 0 (4.2) 

The expressions obtained are extremely lengthy and will therefore not be given here. 
For applications, it may be of interest to consider the case of non-linear boundary conditions 

generalizing (4.2) 

cptx, Y9 Y’) (r=0,1 = 0, b&T + cp;t lx=O,J f 0 (4.3) 

The algorithms for solving boundary-value problem (1.2) with conditions (4.3) may also be modified 
in a suitable way and expressed as recurrence computation procedures. In their general form, however, 
they are quite lengthy expressions, which are only worth presenting for specific functions F, N and cp. 

A combination of the accelerated convergence andpenalty metho&. For large-scale applied calculations, 
it may be desirable, before implementing the investigations described in Section 3, to use a penalty 
method combined with accelerated convergence based on a computation and analysis of residuals 
corresponding to the abscissa. Instead of demanding strict satisfaction of the boundary conditions for 
the variables Y and 2, the magnitude of the residual is minimized at each step of the iteration using a 
penalty method [3-51, e.g. in the form 

E*(x) = c~Y*(x,y,h)+~~Z~(x,y,h) + min, (4.4) 

where cc and ci are weighting factors, yet to be chosen. 
Let us analyse the behaviour of the quantity E* nearx = 1 and values of y and h close to the required 

y” and ho. We note that when y = y”, h = ho there is an absolute minimum at x = 1. The variables Y and 
Z then admit of the following approximate representations 

Y(x) = Y(f) + Y’(f)(x - I), Z(x) = Z(l) + Z’(l)(x - 1) (4.5) 

Here and below, the dependence on the parameters y and A. is not indicated, for brevity. 
Substituting expressions (4.5) into (4.4), we carry out the elementary operation of minimizing the 

function S*(X) with respect to x. The following relations are obtained for the optimal value x = rl 

q-l = -d-‘(c;Y(I)Y’(f)+c;Z(1)Z’(f)) 

S*(q) = E;(q)+E;(q) = c;c;d-‘C* 

d = c;Y’*(f)+C;Z1*(I), G = Y(f)Z’(i) - Y’(l)Z(I) 

E; = c;c;Z’*(l)d-*G*, E; = c;c;Y’*(l)d-*G2 

(4.6) 

The weighting factors cfz may be chosen taking into account the relative importance of the boundarv 
conditions fory (the solution of the initial boundary-value problem) and for 2 (the satisfaction of the 
isoperimetric conditions) for solving the boundary-value problem. 
is taken to be v2 = EC/E;; it then follows from (4.6) that 

Suppose the ratio of these residuals 

V2 
C;=---Z 

E212V2 

Y’*(r) Y2(l) ’ 
Y(1) # 0 

(4.7) 

where the parameters E and u are defined as in (3.1) and (3.2). The coefficients c$ and cg may be made 
more accurate at each step of the iteration of an appropriate recurrence accelerated convergence 
algorithm. 
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This algorithm will now be described. It is constructed using the sensitivity functions q = Zy/dl and 
r = &/al, where 

q = y’v + h’u, f = y’w + h’s, y = y(l), h = A(l) 
(4.8) 

q(l) =-y’(l), r(l) =-z’(l) = -N(l,O,y’(l)) 

The primes denote differentiation with respect to 1. The unknown parameters y(Z) and h(l) are made 
more accurate by successive approximations following the scheme 

Y (n+l) = y(“) + p/p, p = _ u,;)tw(“)to- q”)tw(,)to 

*(n)(l) 

h(n+l) = A(“) + fj(qp, r(n) = r,‘,)tow(,)t~) - qn)to~“)t~) 

*(n,(l) 
(4.9) 

The determinant A n) has the form of (2.8); it is evaluated on the basis of the values of the sensitivity 
coefficients in (4.8 

3:. 
. 

parameters y@), h@’ 
he functions Y(,#), Z,,,(X), V(, (x), U(,,(X), WC,,(x), S(,)(X) also depend on the 

computed at the previous step oft h e iterations. For brevity, this dependence is not 
indicated explicitly. 

It should be noted that algorithm (4.9) possesses accelerated convergence for the criterion E2 relative 
to the initial small parameter 6 = 6(y*, h*) 

ij(“) d c@“-‘))~ d . . . s a-‘(ai5)e(“‘, 0(n) = 2” 

~*(~*,h*)=arg,[c~Y(x,y*,h*)Y(x,y’,h*)+c~Z(x,~*,h*)Z’(x,~*,h*)l 

6=1-q/f, ISlGl, a=const (4.10) 

It is assumed that TJ is a simple root of the equation E’ = 0. An algorithm analogous to (4.9), (4.10) 
may also be proposed for the more general boundary conditions (4.2) and (4.3). In that case appropriate 
changes must be made in the criterion E2, characterizing the residual in the boundary conditions. 

The essential distinction of algorithm (4.4)-(4.10) consists in the minimization of the residual E2(x) 
as a function ofx for known approximate values of the parameters y and h, with subsequent improvement 
of their accuracy. In the standard algorithm (see Section 2 and (2.9)), E2(y, h) is minimized with respect 
to y and h at a fixed value of x = 1; on the basis of this minimization one then improves the accuracy 
of y and h, and this procedure, as we known, may lead to divergence of the recurrence procedure owing 
to “ravine effects”. 

5. COMPUTATION OF THE STEADY INCOMPRESSIBLE VISCOUS 
FLOW IN A PLANE CONVERGENT CHANNEL 

(JEFFREY-HAMEL PROBLEM) 

After changing to the normalized argument x and function y(x), the equations (see [ 151) of the non- 
linear boundary-value problem for the velocity profile, and the conditions for the flow rate to be constant 
can be written in the following form [16] 

y”+a2y-by2 =h, y(O)=y(l)=O, a=4P, b=2PRe 

(5.1) 
z’=y-1, z(O)=z(l)=O, OC~QR, Re>O, ~=(h-a2y)l(a2b) 

where 20 is the aperture angle, Re is the Reynolds number and p is the pressure profile. The arbitrary 
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constant h has the meaning of a Lagrange multiplier in the isoperimetric variational problem (1.1) 
corresponding to (5.1) with functions 

-a2y2 +fby3 , N=y-1 

When Re = 0, problem (5.1) has no mechanical content; nevertheless, its solution is useful as a first 
approximation in the procedure of the perturbation method for sufficiently small values of Re > 0, 
subsequently carrying out continuation with respect to the parameter Re at a fixed value of a [16]. The 
case a = 0 corresponds to Poiseuille flow (151; if a + 1 and Re - 1, an approximate solution is constructed 
by expansions in powers of the parameter a. In the case b %,l one can construct [15] an asymptotic 
first approximationy(‘)(x), from which it follows that y (‘) = y(l) (0) = lpi&E, h(‘)(O) = y( ) (0) = -4 [ 161. 
The solution of problem (5.1) is used as a generating solution to investigate more complex processes: 
heat-mass transfer, viscoelastic flow, etc. 

In applications one is particularly interested in flows with moderately large Reynolds numbers Re 
at comparatively small aperture angles 2p, so that the need arises for computational algorithms. For 
values of practical importance Re - O.l-lo”, l3 - 0.1, in particular, l3” = 5”-lo”, effective 
numerical-analytical methods need to be developed for solving problem (5.1). The modified Newton- 
type accelerated convergence method developed in Sections 2-4, combined with the procedure of 
continuation with respect to the parameters, enables one, after one or two iterations, using relatively 
low computational resources, to obtain extremely accurate values of the unknown quantities. As a result 
one obtains a virtually exact solution with a relative error of 10-5-10-7, which can even be reduced if 
necessary. The algorithm of the method involves computing the missing quantities y = y’(0) and 
h = y”(0) which determine the functions y(x) and Z(X) as a solution of Cauchy problem (5.1) at fixed a 
and b, i.e. p and Re. 

1. Let us first consider the simplest (classical) case of single-mode flow, symmetrical about 8 = 0 
(x = ‘i2) [15]. It IS assumed at the initial step of the algorithm that sufficiently accurate estimates 
y0 and ho are available for y and h. They may be found by variational techniques on the basis of functionals 
(l.l), (5.2) and a suitably selected test functiony*(x) [14,16]. As computations have shown, the function 
y(x, a, b) is fairly simple in form. The procedure of continuation with respect to the parameters p and 
Re (or a and b) is extremely convenient. In particular, for fixed II = 48 > 0 it is proposed to take 

y. = 8P21sin 2p, X0 = -32p31 cos 2p 

as the initial approximations of yo(b,) and &,(b,) for sufficiently small b, > 0. Using the recurrence 
accelerated convergence algorithm (see Sections 2 and 3) with the required accuracy one determines 
y1 = y(b,) and hi = h(b,), which are taken as initial approximations for yO(bz) and h,(b?); and so on. 
The existence of sets {yk} and {hk} of sufficiently accurate values of ‘/k and hk (k = 1, 2, . ,) enables 
one to extend the interval &k+i = hk+l - bk by polynomial (usually linear or quadratic) extrapolation 
of the initial approximations yO(bk+ 1) and ho(bk+ ,). 

The iterative algorithm for improving the approximations to the required quantities y(b) and h(b) 
at the first and following steps involves integrating two Cauchy problems for sixth-order systems or one 
Cauchy problem for a ninth-order system. These problems are described by the simultaneous equations 
(5.1) for y and z, with the conditions 

Y(o) = do) = 0, Y’(o) = y,(b), h = h,(b), n = O,l,. ., b E (b,} (5.3) 

and equations for the sensitivity functions u, M? and ~1, s, that is, the derivatives of the solution y(s), Z(X) 
with respect to y and A, respectively 

~“+a% -2byv =O, w’=v, v(O)=w(O)=O, v(O)=1 

u” + a2u - 2byu = 1, s’ = u, u(0) = u’(0) = s(0) = 0 
(5.4) 

The Cauchy problems (5.1) (5.3) and (5.4) are integrated simultaneously or separately and the 
functions y*(x) and Z,(X) are determined. To refine the quantities y,(b) and h,,(b) one needs to know 
the functionsy,,~,,, u,~, w,,, ~1, and s,! at the final pointx = 1 for b E {bk). The standard scheme of Newton’s 
method hasthe form (see Section 2) 
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&, = -[~,(~)~,(l)-z,(l)u,(l)lA~‘(l) 

6% =~~,~l~~,~l~-z,(l)v~(l)lA~‘(1); n=O,l,... 

A,,(x) =u,,(x)s,(x) - u,(x)w,(x), A,,(l) # 0 

(5.5) 

The recurrence n-process (5.5) is continued until the required accuracy is achieved, that is, until the 
residuals y,(l) and ~~(1) are sufficiently small. Convergence of the algorithm requires thorough 
verification at each step and depends on te values of the residuals and the determinant A,(l) of the 
matrix of the sensitivity coefficients. A specific feature of the proposed modification of the accelerated 
convergence method is the additional verification that the process is convergent according to the 
abscissae 5, and rln, that is, according to the quantities 1 E, 1 and 1 un 1 

E, =I-{,, p, =1-Q; 5, = argy,(x), 77, = wsz,(x) (5.6) 

The values of E, and rln in (5.6) are the roots (zeros) closest tox = 1 of the functionsy,&) andz&). 
The effectively verifiable conditions 1 &o 1, 1 u. I G 1, I E, 1, I p,, ( -+ 0 indicate the existence of the required 
solution of boundary-value problem (5.1) and the convergence of algorithm (5.1) (5.3)-(5.6), which is 
accelerated (quadratic); the quantities E, and un of (5.6) satisfy the estimates 

I En+1 I- En29 Ill,+, l-l& y,(l)=-Y,E,, z,(l)=-CL,; n=O,l,... (5.7) 

Convergence depends on the moduli of E = &o and p = po, being small, that is, onx = 1 being close 
to the abscissae &, and rlo, which is ensured by proper choice of the initial approximation y,,(b), ho(b), 
b E {bk}, and by the step-size 6bk or extrapolation. In addition, the condition I A,(l) I 2 const > 0 must 
be satisfied (see (5.5)). If estimates (5.6) and (5.7) are substantially violated, further analysis is needed, 
usually associated with degeneracy of the standard algorithm: A,(l) = 0 (for example, if p + n/2 or 
a -+ 27~). Simultaneous determination of the residuals y,(l), z,(l) and E,, p,, enables one to compute 
highly accurate values of the required parameters y(b) and h(b) at an arbitrary fixed value of a, that is, 
0 < p < 1.~12. Th e procedure of continuation with respect to the parameter a, a E {aj), is implemented 
in a similar fashion. If needed, one can construct the functions y(a, b) and h(a, b) by continuation with 
respect to the parameters a, b (0 c p < rr, 0 < Re G Re* < -). 

Computations have established that the solution of problem (5.1) is obtained in a few iterations 
(usually just two or three), with an error of 10-5-10-7, without the need to extrapolate with respect to 
bk. It should be noted that at the beginning of the calculation (when b 4 1) one has A,(l) = 0.1; this 
requires sufficiently small initial step-sizes 6bk = 0.01 for b. As b increases, the quantity A,(l) also 
increases, making it possible almost immediately (b - 0.5) to enlarge the step-size 6bk =0.1-l. 
Computational experience has shown that the smallness of the quantities &o and ua is the decisive factor 
for rapid convergence of the iterative algorithm; as a rule, it is sufficient that Ed, ~0 - 0.1. 

Using the recurrence algorithm (5.1) (5.3)-(5.5) the required quantities y and 3L and the function 
y(x) have been computed for fixed values of the angle p E [1”-89.999”]; the parameter b = 2fl Re, 
p = 2np”i360” w as varied within the limits b E [0, 2001. The computations were carried out with the 
above-mentioned precision of 10-5-10-7 in the residuals y(l) and z(l), and E and p. The results for a 
characteristic value, p” = lo”, are shown in Figs 4-7, curves 1. The curves y(b) and h(b) are shown in 
Fig. 4(a) for 1 G b < 10 and in Fig. 4(b) for 10 4 b i 200. They defined a solution of Cauchy problem 
(5.1); the corresponding velocity profiles y(x) for b = 1, 10, 200 are shown in Figs 5-7. According to 
relations (5.1) the pressure p(x) is a linear function ofy. 

2. Using the algorithm developed above one can effectively investigate multi-mode (asymmetric and 
symmetric) viscous flows. What makes the construction of multi-mode velocity profiles particularly 
difficult is the degeneration of the problem as b + 0. This leads to unbounded values of the parameters 
y(b) and h(b) needed to integrate the appropriate Cauchy problem (5.1). At a certain fixed value of 
the parameter b = b. (usually b. = 10) and selected mode level (n = 2, 3, . . .) a search is carried out 
for the unknown quantities y and h and they are computed with high precision, so as to obtain the residual 
indicated previously corresponding to the boundary conditions. Continuation with respect to the 
parameter b is then used to construct universal curves y(b) and h(b) for 0 < b < bo and bo < b c -. 
The computational difficulties are aggravated by the fact that the quantities y,, B yl, h, B hi (by several 
orders of magnitude) and reach very high values at b = 1, e.g., y3 - 104, hs - 105. These circumstances 
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may explain the fact that, up to the present, no conclusive results have been achieved in determining 
and analysing multi-mode flows in the Jeffrey-Hamel problem. 

A graphical representation of a numerical-analytical investigation of multi-mode flows when n = 2, 
3, is given in Figs 4-7. They are compared with the curves representing the classical solution (n = 1) 
presented in Section 1, which has been studied previously [16], inter alia for different values of the 
parameter a. It has been shown that when II 2 2 the odd modes n correspond to symmetrical solutions 
(about x = ‘iz, i.e. 8 = 0) and even modes II correspond to asymmetric solutions. 

Analysis indicates that the flows possess well-defined structural properties. Specifically; the positive 
maxima (n 2 3) and negative minima (n Z= 4) of the functionsy,(x, 6) have practically identical values. 
In addition, at all zeros Xi (i = 1, ., II + 1) of the function y,(x, b) (for fixed n and 6) the derivatives y; 
are equal in absolute value, that is, y,(b) = *yL(X,, b). Thus, in a certain sense, multi-mode flow is a 
combination of single-mode and double-mode flows; this obviously follows from the common radial@ 
property of the flows. 

Figures 4(a, b) show graphs of the functions y,(b) and h,(b) on different scales for 1 c b d 10 and 
10 < b s 200, respectively. They define solutions of the boundary-value problem by integrating the 
Cauchy problems at a fixed value of the parameter a (i.e., the angle p). The curves exhibit interesting 
properties near b = 0, the graphs having vertical asymptotes: yn + +m, h, 3 - as b + +O. We recall 
that the classical single-mode solution [16] has finite values of y1 and hi. Also to be noted are the high 
absolute values of yn and h, at b - 1, while the differences y,, - yflml, h,-, - h, increase without limit as 
b + +0 and as the number n is increased. Each curve yn has a minimum value at a certain fairly high 
value of b = bj: - 10’ - 10’ and tends very slowly from above to the asymptote y(i) = m. Similarly, 
the curves h, have maximum values at certain values of b = bk - lo- and they too tend very slowly, 
from below, to an asymptote h (‘) - -h This implies a conclusion of importance in the mechanical context: - . 
all the steady modes, including the fundamental (n = 1, see [16]), tend, in the limit in some metric for 
0 <x < 1, to an ideal flow as b + M (Re --;r -). 

In fact, the curves y,,(b) and h,(b) are the main result of these investigations, and using them, via 
integration of Cauchy problem (5.1) one obtains the main characteristics of steady flow in a convergent 
channel: the velocity profile y(x), the pressure p(x), the components of the strain rate tensor and the 
stress tensor, and so on (161. The form of the curves yn and h,, is fairly simple, but their construction 
demands extremely laborious, high-precision, calculations, which become even more involved as 
6 -+ +0 and b -+ ~0. The problem exhibits pronounced “boundary-layer” and “ravine” effects. Com- 
putational algorithms based on the well-known methods of functional analysis (Bubnov-Galerkin), finite 
elements, and finite differences do not yield satisfactory results. 
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Table I 

b 4 -P2” -P3” 4; x lo5 4; x 105 4; x 105 

1 26.5219 5.32829 2.55111 5618 2626 2077 
10 11105.5 167.974 6.67587 1322 1076 270 

200 21817.9 296.093 8.23039 937 807 243 

As an illustration of multi-mode flow, Figs 5-7 present velocity profilesy,@), II = 2,3, for three values 
of b: relatively small, b = 1; “medium”, b = 10; and comparatively large, b = 200. At small values of 
the parameter b (Re), one observes large oscillations of positive and negative values of the velocity, 
that is, of the functionsy&). Corresponding to these values are regions of inflow (y, > 0) and outflow 
(y, > 0). An increase in the parameter b (Re) reduces the amplitude of the oscillations and causes a 
reduction in back flows. At high values of b - lo’--lo3 one observes pronounced forms corresponding 
to the flow of a weakly viscous fluid in a convergent channel. The deviation from the rectangular flow 
profile of an inviscid (ideal) fluid, in terms of a suitable metric, tends to zero for 0 < x < 1; near 
x = 0, 1 (0 = Zp) one has typical boundary-layer phenomena. 

Note that, according to the last relation of (5.1), the pressure 
linearly related [14, 15b the principal component being p,” = 

profile p and flow velocity profile y are 
h,/(a*b). The relative variations of the 

functionp = p,(x) = pn(l + 6,(x)) are very small and are estimated by the quantities 6, = -a2y,,/hn. 
Computations indicate (see Table 1) that the principal values of the pressure and estimates of the 
extremal values of S,* with respect to x also have this property. Thus, the essential (qualitative) 
restructuring of the flow is caused by small variations in pressure, which decrease without limit as the 
parameter b, i.e. Re, is increased, where pn -+ --a-’ as b + ~0. 
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